3x(4x+4)=6(x^2+1)

Simple and best practice solution for 3x(4x+4)=6(x^2+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(4x+4)=6(x^2+1) equation:



3x(4x+4)=6(x^2+1)
We move all terms to the left:
3x(4x+4)-(6(x^2+1))=0
We multiply parentheses
12x^2+12x-(6(x^2+1))=0
We calculate terms in parentheses: -(6(x^2+1)), so:
6(x^2+1)
We multiply parentheses
6x^2+6
Back to the equation:
-(6x^2+6)
We get rid of parentheses
12x^2-6x^2+12x-6=0
We add all the numbers together, and all the variables
6x^2+12x-6=0
a = 6; b = 12; c = -6;
Δ = b2-4ac
Δ = 122-4·6·(-6)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{2}}{2*6}=\frac{-12-12\sqrt{2}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{2}}{2*6}=\frac{-12+12\sqrt{2}}{12} $

See similar equations:

| -7(6+4m)=-210 | | 4x+2x=14-x | | 3x^2+6x-7=-10 | | x(x^2)=16x | | -5(x+3)+8x=3 | | 5m/6+2=8-m/3 | | 4a+3=15a= | | 2+3n+-5=3n+-10 | | 5x+4=2x+19= | | 7=9+4k | | (8/9x)-(1/2)=-2/3x+16 | | 3x=4x-70.5 | | -2x^2+12x-80=0 | | x²=3,14(2x-3,14) | | -5(1-8b)=315 | | 1.4k=3.8k-1.4 | | x2−16x+64=0 | | 5x2−4.7x−6.46=0 | | 4-7m=-3m=4 | | (3t/t^2-16)+(6/t+4)=1/t-4 | | u/5+2=u/3-4 | | 5(y-4)÷3=2y-5 | | 4x•5=25 | | x/20-100=1 | | Y=(5x+8)(4x+1) | | 12x-3=5x-52 | | (3h/5)-17=(37/30) | | 3(-8n-5)=105 | | 8x+6x=168 | | x2+12x+16=0 | | 33x-12=18 | | 8x+(4)(1.5x)=168 |

Equations solver categories